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Abstract. The problem of a plane wave diffraction by a highly contrast transparent wedge of an
arbitrary opening is studied. With the aid of the Sommerfeld integrals it is reduced to a system
of coupled Maliuzhinets’ equations. By use of the theory ofS-integrals the system of functional
equations is transformed to a system of linear equations in a Banach space. In the case of the high
contrast of a material inside the wedge in comparison with that in the wedge’s exterior the linear
equations are solved by means of perturbation theory. Convergence of the corresponding Neumann
series is proved. Singularities of the integrands in the Sommerfeld integrals are investigated.
Application of the steepest descent method leads to the determination of the reflected, transmitted
and diffracted waves. Expressions for the diffraction coefficients are also represented.

1. Introduction

The problem of diffraction by a transparent wedge has attracted the attention of researchers
for a long time. Contrary to the problem of diffraction by an impedance wedge solved by
Maliuzhinets (1958) in an explicit form, up to now there has been no closed-form solution
which is acceptable for applications. The results obtained by Latz (1973) and Kurilko (1968)
look very complex and can hardly be used in practice. The solution developed by Kraut
and Lehman (1969) is based on progress in the Wiener–Hopf function-theoretic technique.
However, the authors could not exploit their results for any applications. Berntsen (1983)
considered the problem from the general point of view and developed some new accurate
results. He also studied correction to the physical optics approximation. To our mind, however,
the numerical implementation for his results as well as a physical analysis are not simple enough
for applications. Rawlins (1977) developed the approximate solution which is valid for the
refraction index close to unity. He could also obtain the expressions for the far field and used
them for the numerical simulation. Interesting results for nearly transparent or thin wedges
were represented by Kaminetsky and Keller (1975). They determined simple formulae for the
diffraction coefficients which are of great importance in the geometrical theory of diffraction.

Recent progress in the problem under consideration is connected with the works of Budaev
(1992, 1995). The author developed the original approach based on Sommerfeld integrals,
Maliuzhinets’ functional equations and their reduction to singular integral equations. Budaev
and Bogy could also obtain numerical results in the corresponding problem of diffraction in
an elastic wedge (1996) and in a double wedge (1998). Some promising results have been
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claimed by Osipov†. He applied Kontorovich–Lebedev’s transform and reduced the problem
in question to integral equations of the Fredholm type.

Among numerous papers devoted to an approximate solution which is based on some
physical conceptions (Westwood 1989, 1990, Liet al 1992, Booysen and Pistorius 1992)
such as physical optics, the paper of Kimet al (1991) ought to be mentioned (see also Kim
1997). The corresponding physical motivation is supplemented by a numerical study of the
problem. Simple expressions for the diffraction coefficients are also represented. This paper
is of particular interest for us since, in principle, it contains the results dealing with a highly
contrast transparent wedge. Diffraction by a highly contrast transparent wedge is the main
subject of our treatment.

We introduce the parameterλwhich is called the parameter of contrast. In the case of two
different acoustic media outside and inside a wedge this parameter is the ratio of the densities
ρ1 andρ2

λ = ρ1

ρ2
.

If one studies the electromagnetic problem, the equalityλ = ε1/ε2 defines this parameter for
the H-polarization andλ = µ1/µ2 is for the E-polarization, whereεi andµi , i = 1, 2 are
the permittivities and permeabilities of the media respectively. We say that a wedge is highly
contrast if the parameter of contrast is small, i.e.

λ� 1.

Another important parameter of the problem is the ratio of the wavenumbersk1 andk2

outside and inside the wedge respectively,γ = k1/k2. In this paper our approach enables us
to considerλ andγ as independent parameters. In particular, the results which follow from
perturbation theory are valid for a sufficiently smallλ but for arbitrary values ofγ, 0< γ < 1.
On the other hand, the results are also valid if the parametersλ andγ correlate as, for example,
in the corresponding electromagnetic problem.

It is worth noticing that the perturbation theory which is used in this paper has been
applied to solving coupled Maliuzhinets equations in the works of Lyalinov (1994), of Pelosi
et al (1998) and in some others.

In section 2 we formulate the problem. By use of the Sommerfeld integrals we reduce it
to a system of Maliuzhinets’ functional equations for two unknown functions which are in the
integrands of the Sommerfeld integrals representing a solution inside and outside the wedge.

In section 3, with the aid of theS-integrals we reduce the functional equations to the
system of linear equations in a Banach space. The linear equations contain a small parameter
of contrastλ and can be solved by the perturbation method. We also discuss the limiting
problems asλ = 0.

In section 4 we study the singularities of the integrands in the Sommerfeld integrals.
Application of the saddle-point technique leads to the nonuniform expressions for the reflected,
transmitted and diffracted waves in the far field. The formulae for the diffraction coefficients
are also derived. We consider them as one of the main results of this paper. A uniform
asymptotic formula for the wave field in the exterior of the wedge is briefly discussed.

Appendices are devoted to the technical results such as an extention of the theory ofS-
integrals, proof of the boundedness of the operators in the linear equations and formulae for
analytic continuations of the spectral functions.

References do not form a complete list; however, they reflect our preferences and
knowledge of up-to-date publications on the subject.

† These results can be found in the work: A V Osipov, Thesis for the Doctor of Science Degree, 1995, St Petersburg
University.
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Figure 1. Diffraction by a transparent wedge (a) π −8 < ϕ0 < 8, (b) 0< ϕ0 < π −8.

2. Formulation of the problem and reduction to the system of Maliuzhinets’ functional
equations

2.1. Formulation

The wave fieldsu andv satisfy the Helmholtz equations

(4 + k2
1)u = 0 4 = ∂2

x + ∂2
y (1)

in the angle (figure 1)

0(−8,8) = {(r, ϕ) : r > 0,−8 < ϕ < 8} π/2< 8 < π

and

(4 + k2
2)v = 0 (2)

in the supplementary angle

0(8, 2π −8) = {(r, ϕ) : r > 0,8 < ϕ < 2π −8}
respectively, where(r, ϕ) are the polar coordinates. The time dependence exp(−iωt) is used
and suppressed in the following. The wave fields are excited by the incident plane wave

ui(k1r, ϕ) = exp(−ik1r cos(ϕ − ϕ0)) (3)

and satisfy the boundary conditions

u|S1,2 = v|S1,2 (4)

∂ϕu|S1,2 = λ∂ϕv|S1,2 (5)

whereS1 andS2 are the wedge’s faces,λ is the parameter of contrast. The wave field should
also satisfy the radiation condition at infinity. This condition implies that, if fromu andv we
substract the geometrical optics wavesug andvg given rise due to reflections and transmissions
(including multiple ones) in0(−8,8) and in0(8, 2π − 8) respectively, the remainders
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should behave themselves as outgoing cylindrical wave ask1,2r → ∞ (see Petrashen’ and
Budaev 1986)

u− ug = C1(ϕ)√
k1r

eik1r

(
1 + O

(
1

k1r

))
v − vg = C2(ϕ)√

k2r
eik2r

(
1 + O

(
1

k2r

))
.

(6)

Instead of radiation conditions (6) one can exploit the principle of limiting absorption (see
Rawlins 1977, Berntsen 1986). We also impose the Meixner’s condition at the edge

u = const + O(rδ) v = const + O(rδ) δ > 0 (7)

whereδ is the smallest positive root of the equation (Budaev 1992)

cos(δ8) sin(δ8̄)− λ sin(δ8) cos(δ8̄) = 0 or cot(δ8)− λ cot(δ8̄) = 0 (8)

where8̄ = π − 8. For a smallλ, the desired solution of equations (8) is given by the
expression

δ = π

28
− 1

2
λ sin(π/8) + O(λ2) (9)

which means that

δ < µ (10)

whereµ = π/(28) andπ/2 < 8 < π . It is well known that in the case of the Neumann
boundary condition on the hard wedge’s faces the singularity of the first derivative of a solution
at the tip is O(rµ−1). From (9) and (10) it follows that in the case of a transparent wedge this
singularity is stronger, O(rδ−1).

2.2. Sommerfeld integrals and problem for the functional equations

Solutions of the Helmholtz equations (1) and (2) are sought in the form of the Sommerfeld
integrals

u(k1r, ϕ) = 1

2π i

∫
Cα

f (α + ϕ) exp(−ik1r cosα) dα (11)

v(k2r, ϕ) = 1

2π i

∫
Cβ

g(β + ϕ) exp(−ik2r cosβ) dβ (12)

whereCα = C+∪C− andCβ = C+∪C− are the well known double loop contours (figures 2(a)
and (b)) (see also Maliuzhinets 1958) onα- andβ-planes respectively. The spectral functions
f andg are to be chosen in order to satisfy boundary conditions (4) and (5). Substituting the
integrals (11) and (12) into the boundary conditions, we have∫
Cα

exp(−ik1r cosα)f (α − (−1)j8) dα =
∫
Cβ

exp(−ik2r cosβ)g(β + (−1)j 8̄) dβ (13)∫
Cα

exp(−ik1r cosα)f ′(α − (−1)j8) dα =
∫
Cβ

exp(−ik2r cosβ)λg′(β + (−1)j 8̄) dβ (14)

j = 1, 2. We integrate by parts in (14), thus obtaining∫
Cα

exp(−ik1r cosα)f (α − (−1)j8)γ sinα dα

=
∫
Cβ

exp(−ik2r cosβ)g(β + (−1)j 8̄)λ sinβ dβ. (15)



Diffraction by a highly contrast transparent wedge 2187

Figure 2. Sommerfeld contours and branch cuts of the spectral functions.

In order to derive functional equations with the aid of the Maliuzhinets’ theorem it is necessary
to have the same exponential factors in the integrands of (13) and (15). For this we introduce the
new variable of integrationα in the right-hand sides of equalities (13) and (15) in accordance
with the equation (see also Petrashen’ and Budaev 1986)

cosβ = γ cosα (16)

which definesβ as a function ofα, β = b(α) = arccos(γ cosα) on theα-plane with
appropriate branch cuts (figure 3(a)). The properties of the mapb(α) and its inverse
a(β) = arccos(γ−1 cosβ) are very important for further analysis so we discuss them in
some details. The functionsb(α) anda(β) are regular on the complex planesC∗ andC∗
respectively with the branch cuts shown in figures 3(a) and (b), whereγ ∗ = iarccosh(γ−1)

andγ∗ = arccos(γ ). The branches are fixed by the condition: the part [γ ∗ + i0, i∞) of the
imaginary axis inC∗ is univalently mapped onto the part [+i0, i∞) of the imaginary axis inC∗.
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Figure 3. The complex planesC∗ andC∗.

This condition preserves the natural property lim
γ→1−0

b(a) = a. The conformal functionb(α)

maps the shaded semistrip in figure 3(a) onto the shaded one in figure 3(b). The following
properties ofb(α) are easily verified:

b(α) = −b(−α) b′(α) = b′(−α)
b(ᾱ) = b̄(α)
b(α + πn) = b(α) + πn n ∈ Z
b(α) = α + i logγ + O(1/ cosα) α→ +i∞
b(π/2 + it0) = π/2 + is(t0) t0 ∈ R s ∈ R.

(17)

In the last equalitys(t0) is a real function of its argument. Properties similar to (17) are valid
for a(β). From equation (16) we obtain

dβ

dα
= γ sinα

sinβ
= γ sinα√

1− γ 2 cos2 α
. (18)

Performing the mentioned change of variables in the right-hand sides of (13) and (15), then,
exploiting (18) and the well known results on inversion of Sommerfeld integrals, we come to
the coupled system of functional equations

f (α − (−1)j8)− f (−α − (−1)j8) = γ sinα√
1− γ 2 cos2 α

×[g(b(α) + (−1)j 8̄)− g(−b(α) + (−1)j 8̄)]
f (α − (−1)j8) + f (−α − (−1)j8) = λ[g(b(α) + (−1)j 8̄) + g(−b(α) + (−1)j 8̄)]

(19)

wherej = 1, 2. The complex variableα belongs to the complex planeC∗. Budaev (1992)
could reduce a system analogous to (19) to a singular integral equation and studied it. We shall
follow a different way which seems more convenient to us and enables us to develop relatively
simple expressions for the diffraction coefficients whenλ is sufficiently small.

We multiply the first equation in (19) byλ
√

1− γ 2 cos2 α and the second one byγ sinα
and sum them up. Then, multiplying the first equation by

√
1− γ 2 cos2 α and the second one
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by the same factor, we also sum them up. As a result, we come to the equivalent system of
functional equations(
γ sinα + λ

√
1− γ 2 cos2 α

)
f (α − (−1)j8) +

(
γ sinα − λ

√
1− γ 2 cos2 α

)
×f (−α − (−1)j8) = 2γ λ sinαg(b(α) + (−1)j 8̄)(

γ sinα + λ
√

1− γ 2 cos2 α
)
g(b(α) + (−1)j 8̄) +

(
γ sinα − λ

√
1− γ 2 cos2 α

)
×g(−b(α) + (−1)j 8̄) = 2

√
1− γ 2 cos2(α)f (α − (−1)j8)

with j = 1, 2. Elementary transformations enable us to obtain

f (α − (−1)j8) = −R(α, γ, λ)f (−α − (−1)j8) + λT (α, γ, λ)g(b(α) + (−1)j 8̄)
g(β + (−1)j 8̄) = −R(β, γ−1, λ−1)g(−β + (−1)j 8̄)

+λ−1T (β, γ−1, λ−1)f (a(β)− (−1)j8)
(20)

wherej = 1, 2, α ∈ C∗, β ∈ C∗;R andT = 1+R are the so-called reflection and transmission
coefficients

R(α, γ, λ) = γ sinα − λ
√

1− γ 2 cos2 α

γ sinα + λ
√

1− γ 2 cos2 α
(21)

T (α, γ, λ) = 2γ sinα

γ sinα + λ
√

1− γ 2 cos2 α
. (22)

It is also convenient to write system (19) as follows:

f (α − (−1)j8) + f (−α − (−1)j8)
= λ(g(b(α) + (−1)j 8̄) + g(−b(α) + (−1)j 8̄))

g(β + (−1)j 8̄)− g(−β + (−1)j 8̄)

= sinβ√
γ 2 − cos2 β

(f (a(β)− (−1)j8)− f (−a(β)− (−1)j8)

(23)

with j = 1, 2. Both equivalent forms (20) and (23) will be used for analysis.
The system of functional equations (23) should be supplemented by additional conditions

which follow from radiation condition (6) and from Meixner’s conditions (7) at the edge;
see, for example, Budaev (1992), Petrashen’ and Budaev (1986). Since the behaviour of a
Sommerfeld integral asr → 0 is determined by the asymptotics of the spectral function asα

(or β)→∞, from the Meixner’s conditions (7) we obtain

|f (α)− f (±i∞)| 6 const exp(−δ|Im α|) α→±i∞ (24)

|g(β)− g(±i∞)| 6 const exp(−δ|Im β|) β →±i∞. (25)

The spectral functiong(β)must be regular in the basic strip5β(−8̄, 8̄) = {β ∈ C∗ : −8̄ <

Reβ < 8̄}. The functionf (α) must be regular in the strip5α(−8,8) = {α ∈ C∗ : −8 <

Reα < 8} with the exception of one pole atϕ = ϕ0, (0 < ϕ0 < 8). The residue at this pole
is determined by the amplitude of the incident wave (3) so that resϕ0f (α) = 1. It is known
that the radiation conditions imply the above-mentioned properties off (α) andg(β), namely

f (α)− 1/(α − ϕ0) is regular in 5α(−8,8) (26)

g(β) is regular in 5β(−8̄, 8̄). (27)

Because it is well known that we can add a constant to the integrand of the Sommerfeld integral
without changing its value, so it is convenient and always possible to choose

f (i∞) = −f (−i∞) (28)

g(i∞) = −g(−i∞). (29)
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Conditions (28) and (29) enable us to exclude some freedom in determination of the spectral
functions: continuity of the wave field at the edge and the second equation in (23) imply the
equality

g(i∞) = f (i∞). (30)

It is useful to notice that values and all singularities of the spectral functions outside the basic
strips can be calculated from functional equations (20) or (23) provided that we have already
found their solution in the basic strips.

Although some results on explicit solvability of coupled Maliuzhinets’ equations are
known (Lyalinov 1997, Bernard 1998), the problem for functional equations (23) can hardly
be solved in an exact form. However, we intend to reduce the problem (23)–(29) to a system
of linear equations in a Banach space and, then, to solve it by a perturbation method for a small
λ. In order to obtain the mentioned system of linear equations we should have an opportunity
to invert some difference operators attributed to the system (23). Such an inversion can be
performed by use of some generalization of the theory ofS-integrals proposed by Tuzhilin
(1973). The corresponding results are represented in appendix A.

3. Reduction to a system of linear equations

First, instead off (α) andg(β) we introduce new unknown functionsF(α) andG(β) defined
by the equalities

f (α) = σϕ0(α)F (α) σϕ0(α) =
µ cosµα

sinµα − sinµϕ0
(31)

g(β) = G(β). (32)

Note thatσϕ0(α) defined in (31) has the required pole atα = ϕ0, then, taking into account
resϕ0f (α) = 1, we have

F(ϕ0) = 1. (33)

The functionσϕ0(α) represents the spectral function in the diffraction problem by a wedge with
hard faces, i.e., with Neumann boundary conditions on them. This problem is the limiting case
for a highly contrast transparent wedge asλ→ 0: F(α)→ 1. With the aid of formulae (31)
and (32) we write system (23) as follows:

F(α − (−1)j8)− F(−α − (−1)j8) = (−λ)cosµα + (−1)j sinµϕ0

µ sinµα

×[G(b(α) + (−1)j 8̄) +G(−b(α) + (−1)j 8̄)] (34)

G(β + (−1)j 8̄)−G(−β + (−1)j 8̄) = sinβ√
γ 2 − cos2 β

(−µ) sinµa(β)

cosµa(β) + (−1)j sinµϕ0

×[F(a(β)− (−1)j8) + F(−a(β)− (−1)j8)] (35)

with j = 1, 2. Note thatF(α) satisfies condition (24). From (26) we have thatF(α) is regular
in 5α(8,8). Condition (28) is changed by

F(i∞) = F(−i∞). (36)

In accordance with (32) the functionG(β)meets the same conditions asg(β). The right-hand
side of equations (34) tends to zero exponentially asα → i∞ whereas the right-hand of (35)
is a constant at infinity. We apply the theory ofS- ands-integrals discussed in appendix A



Diffraction by a highly contrast transparent wedge 2191

and invert the difference operators in the left-hand sides of (34) and (35) respectively, thus
obtaining

F(α) = AF +
iλ

88

2∑
j=1

∫
Lα

(−1)jµ−1 cosµτ + (−1)j sinµϕ0

cosµτ + (−1)j sinµα

×[G(b(τ) + (−1)j 8̄) +G(−b(τ) + (−1)j 8̄)] dτ (37)

whereα ∈ 5α(−8,8), and

G(β) = AG − i sin µ̄β

88̄

2∑
j=1

∫
Lβ

Dj (τ, F )

cosµ̄τ + (−1)j sinµ̄β
dτ β ∈ 5β(−8̄, 8̄) (38)

where

Dj(τ, F ) = µ sinτ√
γ 2 − cos2 τ

sinµa(τ) tanµ̄τ

cosµa(τ) + (−1)j sinµϕ0

×[F(a(τ)− (−1)j8) + F(−a(τ)− (−1)j8)]. (39)

The arbitrary constantsAF andAG which are solutions of the corresponding homogeneous
difference equations can be explicitly calculated. We putβ → i∞ in both sides of (38) and
take into account (39). After some computations we find

AG = i

88̄

∫
Lβ

(D2(τ, F )−D1(τ, F ))dτ.

The constantAF is easily determined from (33). As a result, from (37) and (38) we obtain

F(α) = 1 +λ(K1G)(α) (40)

G(β) = (K2F)(β) (41)

where

(K1ξ)(α) = i

88

2∑
j=1

∫
Lα

(−1)j

µ

{
cosµτ + (−1)j sinµϕ0

cosµτ + (−1)j sinµα
− 1

}
×[ξ(b(τ ) + (−1)j 8̄) + ξ(−b(τ) + (−1)j 8̄)] dτ (42)

for α ∈ 5α(8,8). Otherwise,(K1ξ)(α) is defined by the corresponding analytic continuation
of S-integrals; see (68), (71) and (72), and

(K2η)(β) = i

88̄

2∑
j=1

∫
Lβ

(−1)µ sinτ√
γ 2 − cos2 τ

sinµa(τ) tanµ̄τ

cosµa(τ) + (−1)j sinµϕ0
[η(a(τ)− (−1)j8)

+η(−a(τ)− (−1)j8)]

(
sinµ̄β

cosµ̄τ + (−1)j sinµ̄β
− (−1)j

)
dτ (43)

forβ ∈ 5β(8̄, 8̄). Otherwise,(K2η)(β) is defined by the corresponding analytic continuation
of s-integrals; see (69).

3.1. Spaces of solutions.

Let us consider the linear spacesA1 andA2 which consist of functions regular in the strips
(figure 4)51 and52, respectively;ε > 0 is small. We also assume that functionsξ ∈ A1

andη ∈ A2 can be extended as continuous functions on the boundaries of the strips51 and
52, respectively. (The sides of the branch cuts shown in figures 4(a) and (b) belong to the
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Figure 4. The strips (a) 51, (b) 52.

boundaries.) We force these functions satisfy the estimates (24) and (25) as well as conditions
(36) and (29) correspondingly. We endow the linear spaceA1 with a weighted norm

‖ξ ;A1‖ = supα∈51
|ξ(α)| + supα∈51

|(ξ(α)− ξ(i∞))νδ(α)| (44)

whereνδ(α) is a weight function: it has neither zeros nor poles in51, is regular there and
satisfies the estimate

|νδ(α)| = O(exp(δ|Im α|)) as |Im α| → ∞ in 51.

The linear spaceA1 endowed by the norm (44) is a Banach space. We introduce a norm inA2

‖η;A2‖ = supβ∈52
|η(β)| + supβ∈52

|(η(β)− κ(β)η(i∞))νδ(β)| (45)

whereκ(β) is a regular in52 function which is continuous up to the boundary and has the
asymptotics

κ(β) = ±1 + O(exp(−δ1|Im β|)) Im β →±∞ δ1 > δ.

The only role of this function is to ensure an appropriate sign in the second term of (45) as
β → ±i∞. Note that, contrary toξ(α), η(β) has opposite signs atβ → ±i∞ and we are
forced to useκ(β) in order to haveκ(β)η(i∞)→±η(i∞) asβ →±i∞. It is not difficult to
produce such a function in an explicit form.A2 is a Banach space with the norm (45).

The linear operatorK1 in (40) maps functions fromA2 into A1 and the operatorK2 in
(41) maps functions fromA1 intoA2. Moreover, the following proposition is valid.

Proposition 3.1. The system of functional equations (34) and (35) for the functionsF andG,
satisfying (33), (36), (24), and (25), (29) respectively, which are regular in the corresponding
strips51 and52, is equivalent to the linear system of equations (40) and (41) with the operators
K1 andK2 defined above.

We could demonstrate that linear equations (40) and (41) follow from the corresponding
system of functional equations. In order to prove the equivalence it is sufficient to verify
that any solution of (40) and (41) is a solution of (34) and (35). This can be done by the
direct substitution of (40) and (41) into the functional equations (34) and (35) and by use of
S-(s-)integrals; see the lemmas in appendix A.
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3.2. Perturbation series and their convergence

For sufficiently smallλ the solution of system (40) and (41) can be constructed by means of
successive approximations. Consider the following recurrence procedure

Gm−1 = K2Fm−1 m = 1, 2, 3, . . . (46)

Fm = K1Gm−1 F0 = 1 (47)

then, if the series

F = F0 + λF1 + λ2F2 + · · · (48)

G = G0 + λG1 + λ2G2 + · · · (49)

with Fm andGm, defined in (46) and (47), converge, they give a solution of system (48) and
(49). It is obvious that convergence of series (48) and (49) in the corresponding Banach spaces
follows from the inequality

λ‖K1‖‖K2‖ < 1. (50)

We can always takeλ sufficiently small so that the inequality (50) holds provided thatK1 and
K2 are bounded operators. The problem of convergence amounts to the boundedness of the
operatorsK1 andK2.

Proposition 3.2. The operatorsK1 andK2 defined by expressions (42) and (43) respectively
are bounded ifδ < µ (see (10)).

The proof of the former proposition is tedious and is given in appendix B.

3.3. Solutions in the limiting case asλ = 0

It is natural to expect that in the limiting caseλ = 0 the solution is simplified. Indeed, we have

F(α) = 1 f (α) = σϕ0(α)

asλ = 0, which enables us to obtain

u(k1r, ϕ) = 1

2π i

∫
Cα

σϕ0(α + ϕ) exp(−ik1r cosα) dα.

As a result, we observe that in the limiting case the solution coincides with that in the diffraction
problem for a hard wedge, i.e., with the Neumann boundary conditions on the wedge’s faces
(see (5)) asλ = 0).

For the limiting spectral function in the interior of the wedge we find from (41), (43):

g(β) = G(β) = (K21)(β) = i

88̄

2∑
j=1

∫
Lβ

(−2)µ sinτ√
γ 2 − cos2 τ

sinµa(τ) tanµ̄τ

cosµa(τ) + (−1)j sinµϕ0

×
(

sinµ̄β

cosµ̄τ + (−1)j sinµ̄β
− (−1)j

)
dτ.

Then the Sommerfeld integral (12) with the limiting spectral functiong(β) represents the
solution of the problem in the interior of the wedge with inhomogeneous Dirichlet boundary
conditions (4), where the left-hand sideu(k1r, ϕ)|S1,2 in (4) is known as the solution of the
corresponding Neumann problem in the exterior of the wedge. The wave field is excited by
‘sources’ distributed along the boundaries. Note that solutions in the limiting case can be
derived directly from equations (23) asλ = 0.

Proof of convergence of the perturbation series (48) and demonstration of the limiting
case are important from the general point of view. In practice, however, we need the first few
terms of the expansions in order to obtain the far-field asymptotics. The far-field asymptotics
as well as the diffraction coefficients are of the most interest for applications.
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4. Singularities of the spectral functions and the geometrical optics field; the diffraction
coefficients

4.1. Singularities of the spectral functions

By use of the saddle point technique the calculations of the far-field asymptotics from the
corresponding Sommerfeld integrals is traditional: Maliuzhinets’ (1958). One should deform
the Sommerfeld contoursC±α,β into the steepest descent pathsC±′ going through the points±π
(figure 2),k1,2r → ∞. In the process of this deformation some singularirties of the spectral
functionsf (α + ϕ) in 5α(−π − 8,π + 8) andg(β − ϕ̄) in 5β(−π − 8̄, π + 8̄) can be
crossed, (|ϕ| 6 8, |ϕ̄| 6 8̄). The contribution of each singularity is interpreted from the
point of view of the geometrical theory of diffraction: the poles of the integrands give rise
to the incident, reflected and transmitted waves, the contributions from the saddle points lead
to the expressions for the cylindrical waves outgoing from the edge, contributions from the
branch cuts describe the lateral waves. It is useful to notice that, contrary to the reflected and
transmitted waves, diffracted cylindrical waves as well as lateral ones cannot be computed with
the aid of the simple consideration based on the well known laws of reflecton and transmission
accross a transparent boundary. For simplicity we discuss the wedge’s opening 28 satisfying
the constraintsπ < 28 < 3π/2, which means absence of the multiple reflections inside the
wedge. Moreover, we shall consider the right-angle wedge with8 = 3π/4 implying that the
other angles of wedge openings 3π/2 < 28 < 2π can be studied analogously. It should be
emphasized that the case with the multiple reflections can be also considered, which leads to
some quantitative but not qualitative complications of analysis.

We need to know singularities off (z) in the strip5z(−π−8,π +8), z = α+ϕ and those
of g(ζ ) in 5ζ (−π − 8̄, π + 8̄), ζ = β − ϕ̄. In the leading approximations the expressions
for f (z) andg(ζ ) in the basic strips5z(−8,8) and5ζ (−8̄, 8̄) are given by (see (31), (32)
and (48), (49))

f (z) = σϕ0(z)F (z) =
µ cosµz

sinµz− sinµϕ0
[1 + λ(K1G0)(z) + O(λ2)] (51)

g(ζ ) = G(ζ) = G0(ζ ) + O(λ) = (K2F0)(ζ ) + O(λ) F0 = 1 (52)

respectively, where the explicit formulae for the operatorsK1 andK2 are defined by (42) and
(43). Analytic continuations forf (z) andg(z) follow from the functional equations and are
represented in appendix C.

4.2. Contributions from the poles: the geometrical optics field

Let us turn to the contributions from poles. We assume thatπ − 8 < ϕ0 < 8 that is only
one side of the wedge is illuminated by the incident wave (figure 1(a)). The case of the both
sides illuminated is considered in the same manner. The denominator ofσϕ0(28 − z) in the
right-hand side of (91) is equal to zero atz0 = 28 − ϕ0, (α0 = 28 − ϕ − ϕ0). Calculating
the residue contribution of this pole, we obtain the expression for the wave reflected from the
wedge’s sideS1

uR(k1r, ϕ) = R(8− ϕ0, γ, λ)exp{−ik1r cos[ϕ + ϕ0 − 28]}H(π − |ϕ + ϕ0 − 28|)
whereH(x) is the Heaviside unit-step function. The contribution from the polez0 = ϕ0 gives
rise to the incident wave (3).

Since we did not restrict ourselves by the leading approximation in (91) and (92) of
appendix C but preserved the first correction for the leading terms, we can compute the
doubly transmitted (refracted by the wedge) wave (figure 1(a)) which has O(λ) in the domain
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0(−8,8). This wave originates from the pole of the functionG0(b(z +8) + 8̄) in (92). In
formula (92) (

¯
z + 8) + 8̄ ∈ 5β(b(−28) + 8̄, 8̄) and we use expression (94) for analytic

continuation ofg(ζ ) = G0(ζ ) + O(λ), defined in the basic strip, onto5β(b(−28),−8̄). We
seek the pole of the last summand in (94) which satisfies the equation

cosµa(ζ0(z0) + 8̄)− sinµϕ0 = 0

whereζ0(z0) = b(z0 +8) + 8̄. We find that the real root which is of interest for us fulfils the
equation

ζ0(z0) + 8̄ = −b(8− ϕ0)

or

b(z0 +8) + 8̄ = −8̄− b(8− ϕ0).

The last equation can be represented in the form

28̄ + ϑ0 + ϑ1 = π (53)

whereϑ0 = b(8− ϕ0), ϑ1 = b(ϑ), ϑ = π +8 + z0, z0 ∈ 5z(−π −8,−8). Equation (53)
expresses the well known geometrical equality for the sum of angles in a triangle (see
figure 1(a)). The angleϑ(z0) defining the propagation direction of the doubly transmitted wave
is determined in accordance with the geometrical optics laws of refraction cosϑ1 = γ cosϑ,
cosϑ0 = γ cos(8 − ϕ0) and by use of equality (53). Computing the residues off (z) at the
corresponding pole, we find the expression for the doubly transmitted wave

uT T (k1r, ϕ) = T (8− ϕ0, γ λ)T (28̄ + b(ϕ − ϕ0), γ
−1, λ−1)

× exp{−ik1r cos[ϕ +8 + a(28̄ + b(8− ϕ0))]}
×H(π − ϕ −8− a(28̄ + b(8− ϕ0))).

The doubly transmitted wave does not propagate outside the wedge in the case of the total
internal reflection on the second wedge’s sideS2; otherwise, the condition of its existence is
satisfied:ϑ1 > arccosγ or π − 28̄− b(8− ϕ0) > arccosγ .

In the same manner the geometrical optics wave field inside the wedge can be computed.
For example, the transmitted reflected wave (figure 1(a)) inside the wedge takes the form

vTR(k2r, ϕ̄) = T (8− ϕ0, γ, λ)R(28 + b(8− ϕ0), γ
−1, λ−1)

× exp{−ik2r cos[ϕ̄ + 38̄ + b(8− ϕ0)]}H(π − [38̄ + ϕ̄ + b(8− ϕ0)]).

Consideration of the case when both sides of the wedge are illuminated by the incident
wave does not present any difficulties.

4.3. The diffraction coefficients

Let us now turn to the nonuniform expressions for the diffraction coefficientsD1(ϕ) andD2(ϕ̄)

defined as follows

uc(k1r, ϕ) = D1(ϕ)
eik1r+iπ/4

√
2πk1r

(1 + O((k1r)
−1)) (54)

vc(k2r, ϕ̄) = D2(ϕ̄)
eik2r+iπ/4

√
2πk2r

(1 + O((k2r)
−1)) (55)

D1(ϕ) = f (−π + ϕ)− f (π + ϕ) (56)

D2(ϕ̄) = g(−π − ϕ̄)− g(π − ϕ̄). (57)

The functionsuc andvc represent the cylindrical waves propagating from the edge of the
wedge. The corresponding expressions are the leading contributions from the saddle points
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of the Sommerfeld integrals: Maliuzhinets (1958). Since we could compute the spectral
functions in the form of the perturbation series, we can analytically determine the diffraction
coefficients (56) and (57) in the expressions for the cylindrical waves (54) and (55). For the
spectral functionf we use the first two terms of the perturbation series (see (91) and (92)) and
obtain

f (π + ϕ) = −R(π −8 + ϕ, γ, λ)σϕ0(28− π − ϕ)[1 + λ(K1G0)(28− π − ϕ) + O(λ2)]

+λT (π −8 + ϕ, γ, λ)[G0(b(π −8 + ϕ)− 8̄) + O(λ)] (58)

π + ϕ ∈ 5z(π −8,π +8)

f (−π + ϕ) = −R(−π +8 + ϕ, γ, λ)σϕ0(−28 + π − ϕ)
×[1 + λ(K1G0)(−28 + π − ϕ) + O(λ2)]

+λT (−π +8 + ϕ, γ, λ)[G0(b(−π +8 + ϕ) + 8̄) + O(λ)]

−π + ϕ ∈ 5z(−π −8,−π +8). (59)

Note that in expressions (59) the integrals(K1G0)(28−π−ϕ) andG0(b(π−8+ϕ)− 8̄) =
(K2F0) (b(π −8 + ϕ) − 8̄), respectively, are represented by (42) and (43) if the arguments
belong to the corresponding basic strips; otherwise, one should use formulae for analytic
continuation. The analogous remark is valid for expression (59). However, if we consider the
leading approximation only, we obtain a very simple formula for the diffraction coefficient:

D1(ϕ) ∼ R(π −8 + ϕ, γ, λ)σϕ0(28− π − ϕ)− R(−π +8 + ϕ, γ, λ)σϕ0(−28 + π − ϕ).
(60)

In the leading approximation the diffraction coefficientD1(ϕ) for the external field is expressed
in the elementary functions and, after rearrangement, coincides with that obtained in the paper
by Kim et al(1991). Approximate diffraction coefficient (60) has no singularity in the transition
region for the doubly transmitted wave, which was expected because the doubly transmitted
wave has O(λ). Expression (60) can be used for a very highly contrast wedge.

In the leading approximation the diffraction coefficientD2(ϕ̄) in (57) for the internal field
is given by (57), where

g(ζ ) = R(ζ − 8̄, γ−1, λ−1)R(38̄− ζ, γ−1, λ−1)[G0(ζ − 48̄) + O(λ)]

+(−λ−1)R(ζ − 8̄, γ−1, λ−1)T (38̄− ζ, γ−1, λ−1)

× (−µ) sinµa(38̄− ζ )
cosµa(38̄− ζ )− sinµϕ0

[F0 + O(λ)]

+λ−1T (ζ − 8̄, γ−1, λ−1)
µ sinµa(ζ − 8̄)

− cosµa(ζ − 8̄)− sinµϕ0
[F0 + O(λ)] (61)

with ζ = π − ϕ̄ ∈ 5ζ (π − 8̄, π + 8̄), and

g(ζ ) = R(ζ + 8̄, γ−1, λ−1)R(−38̄− ζ, γ−1, λ−1)[G0(ζ + 48̄) + O(λ)]

+(−λ−1)R(ζ + 8̄, γ−1, λ−1)T (−38̄− ζ, γ−1, λ−1)

× µ sinµa(−38̄− ζ )
− cosµa(−38̄− ζ )− sinµϕ0

[F0 + O(λ)]

+λ−1T (ζ + 8̄, γ−1, λ−1)
(−µ) sinµa(ζ + 8̄)

cosµa(ζ + 8̄)− sinµϕ0
[F0 + O(λ)] (62)

with ζ = −π − ϕ̄ ∈ 5ζ (−π − 8̄,−π + 8̄) F0 = 1. Expressions (61) and (62) depend on
elementary functions as well as ons-integrals defined in the basic strip.
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4.4. Branch cuts and the lateral waves

We could consider contributions from the saddle points and from poles which can be captured
when deforming the Sommerfeld contoursC± of integration into the steepest descent paths
C+′ ∪ C−′. Note that the poles of the reflection and transmission coefficients in (91)–(96) are
located outside the area covered in the process of the mentioned deformation of the contours.
However, there are several branch cuts (figure 2) which contribute to the asymptotics. The
function f (z) has the branch cuts with the complex endpoints. For largek1r due to the
exponential factor in the integrand of (11) the corresponding contribution is expected to be
exponentially small. The real branch cuts ofg(ζ )give rise to the lateral waves inside the wedge.
One can expect that these waves have the lower order in powers of(k2r)

−1 in comparison with
the cylindrical waves and can be neglected in the leading approximation of the far field. The
procedure of studying the contributions from the branch cuts in the far-field asymptotics was
discussed by Petrashen’ and Budaev (1986).

4.5. A uniform formula for the far field in the exterior of a very highly contrast wedge

We assume that a tranparent wedge is very highly contrast, which means that we can use formula
(60) for the diffraction coefficient and neglect the doubly transmitted waves. A uniform-with-
respect-to-ϕ formula for the far field can be deduced from the nonuniform expressions with
the aid of the traditional procedure developed by Borovikov and Kinber (1994) and applied to
an imperfectly conducting wedge (Ljalinov 1996). We assume that only one side of the wedge
is illuminated by the incident wave(π −8 < ϕ0 6 8). In this way we obtain

u(k1r, ϕ) = exp(−ik1r cos[ϕ − ϕ0])F

(√
2k1r cos

(
ϕ − ϕ0

2

))
+R(8− ϕ0, γ, λ)exp(−ik1r cos[28− ϕ − ϕ0])

×F
(√

2k1r cos

(
28− ϕ − ϕ0

2

))

+

 1

2 cos
(
ϕ−ϕ0

2

) +
R(8− ϕ0, γ, λ)

2 cos
(

28−ϕ−ϕ0

2

)
+
µ cosµ(28− π − ϕ)R(π + ϕ −8)

sinµ(28− π − ϕ)− sinµϕ0

}
×eik1r+iπ/4

√
2πk1r

+ f (−π + ϕ)
eik1r+iπ/4

√
2πk1r

+ O

(
1

(k1r)3/2

)
+ O(λ)

π −8 < ϕ0 6 8
wheref (−π + ϕ) = σϕ0(−π + ϕ) + O(λ) andF(x) is the Fresnel integral (Ljalinov 1996)

F(x) = 1√
iπ

∫ x

−∞
eit2 dt � H(x)

−sign(x)
ieix2

2π

∞∑
m=0

0(m + 1/2)

(ix2)m+1/2
|x| � 1.

It is worth mentioning that the first two terms depending on the Fresnel integrals describe
the wave field in the transition regions of the light–shadow boundaries for the incident wave
(ϕ−ϕ0 = π ) and for the reflected wave from the left face (π +ϕ = 28−ϕ0). These integrals
degenerate in accordance with their asymptotics if the observation point is outside close
vicinities of the light–shadow boundaries and we obtain nonuniform expressions for incident,
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reflected and scattered waves. The singularities of the other terms on the corresponding light–
shadow boundaries cancel each other so that the formula is really uniform with respect to
the observation angleϕ. It is easily verified that the expression for the far field satisfies
the explicit boundary conditions on the illuminated wedge’s faceϕ = 8 and the Neumann
boundary condition on the shadowed surfaceϕ = −8. We hope that construction of a uniform
asymptotic expression involving higher-order terms with respect toλ (for example, the doubly
transmitted wave) is also possible on the basis of the traditional procedure (Borovikov and
Kinber 1994).

Acknowledgments

The author is thankful to AH Serbest for general support during completion of this work at
Cukurova University and to NY Zhu for fruitful discussions on Sommerfeld integrals.

Appendix A. On some extension of the theory ofS-integrals

Let us consider difference equations for one unknown functionS(α)

S(α − (−1)j8)− S(−α − (−1)j8) = Hj(α) α ∈ C∗ j = 1, 2 (63)

whereHj(α) are given functions onC∗ which are regular in a vicinity of the imaginary axis
excluding points of the branch cut (figure 3(a)). We also study the similar equations

s(β − (−1)j 8̄)− s(−β − (−1)j 8̄) = hj (β) β ∈ C∗ j = 1, 2 (64)

wherehj (β) are defined inC∗. Solutions of equations (63) and (64) are constructed similarly
and for compactness we consider system (63).

Lemma A.1. LetH1(α), α ∈ C∗ be an odd function which decreases exponentially asα→ i∞
and is regular at points of the countourLα (figure 3(a)). Then a particular solution of the
inhomogeneous system (63) (withH2 = 0) which is regular in the strip5α(−38,8) is
determined byS-integral

S(α) = i

88

∫
Lα

H1(τ ) sinµτ

cosµτ − sinµα
dτ µ = π/(28) (65)

for α ∈ 5α(−38,8) or by its analytic continuation

S(α) = i

88

∫
Lα

H1(τ ) sinµτ −H1(α −8) sinµ(α −8)
cosµτ − cosµ(α −8) dτ + (α +8)/(48)H1(α −8)

(66)

for α ∈ 5α(−38, 58). The discontinuous contourLα goes along the imaginary axis from
−i∞ to +0 and, then, from−0 to +i∞ (figure 3(a)).

The proof of the lemma is analogous to that obtained for a meromorphic functionH1: see
Tuzhilin (1973). Formula (66) for the analytic continuation is deduced by means of the known
identity (Tuzhilin 1973)

i

88

∫
Lα

1

cosµτ − sinµα
dτ = (n + 3

4 − α/(48))/ cosµα

α ∈ 5α((4n + 1)8, (4n + 5)8)

wheren is integer. It is obvious that in the corresponding stripS(α) in (66) has singularities
originated fromH1(α−8)only: in the integrand the zeros of the denominator are compensated
by the zeros of the numerator forα = τ + 8. In particular,S(α) has the branch cut on the



Diffraction by a highly contrast transparent wedge 2199

boundary of the basic strip passing from8 + 0 to8 + γ ∗ + 0. S(α) is regular inside the basic
strip5α(−8,8). By the direct substitution of (66) into system (63) we verify that integral
(66) is a particular solution: Tuzhilin (1973).

Lemma A.2. LetS1(α) be a particular solution of the system

S(α +8)− S(−α −8) = H(α)
S(α −8)− S(−α −8) = 0

(67)

withH(α) = H1(α) andS2(α) be a particular solution of (67) withH(α) = H2(α). Then a
particular solution of system (63) is given by the formula

S(α) = S1(α)− S(α − 28).

This lemma is due to Tuzhilin (1973), its proof is elementary and is omitted herein. For the
exponentially decreasingHj(α), j = 1, 2, we conclude that a particular solution of equations
(63) takes on the form

S(α) = i

88

∫
Lα

H1(τ ) sinµτ −H1(α −8) sinµ(α −8)
cosµτ − cosµ(α −8) dτ

− i

88

∫
Lα

H2(τ ) sinµτ −H2(α +8) sinµ(α +8)

cosµτ − cosµ(α +8)
dτ +

α +8

48
H1(α −8)

−α −8
48

H2(α +8) α ∈ 5α(−38, 38). (68)

In the same manner a particular solution of system (64) with the exponentially decreasing
hj (β), j = 1, 2 asβ → i∞ can be written as

s(β) = i

88̄

∫
Lβ

h1(τ ) sinµ̄τ − h1(β − 8̄) sinµ̄(β − 8̄)
cosµ̄τ − cosµ̄(β − 8̄) dτ

− i

88̄

∫
Lβ

h2(τ ) sinµ̄τ − h2(β + 8̄) sinµ̄(β + 8̄)

cosµ̄τ − cosµ̄(β + 8̄)
dτ +

β + 8̄

48̄
h1(β − 8̄)

−β − 8̄
48̄

h2(β + 8̄) β ∈ 5β(−38̄, 38̄) µ̄ = π

28̄
(69)

where the contourLβ is shown in figure 3(b). It is useful to notice that in the corresponding
strips5α(−8 − ε,8 + ε) and5β(−8̄ − ε, 8̄ + ε) with sufficiently smallε > 0 the only
singularities ofS(α) ands(β) are the branch cuts shown in figure 4 provided thatHj andhj
have no other singularities but the corresponding branch cuts ofC∗ andC∗ respectively. The
solutionS(α)(s(β)) is regular in5α(−8,8)(5β(−8̄, 8̄)).

By use of functional equations (63) we can easily obtain

S(α + 48) = S(α) +H1(α + 38)−H2(α +8)

whereα ∈ 5α(−38, 38). In the same manner we have

S(α + 4n8) = S(α) +
n∑

m=1

H1(α + (4m− 1)8)−
n∑

m=1

H2(α + (4m− 3)8)

S(α − 4n8) = S(α)−
n∑

m=1

H1(α − (4m− 3)8)−
n∑

m=1

H2(α − (4m− 1)8)
(70)

wheren > 1 is integer,α ∈ 5α(−38, 38). Formulae (70) enable us to continueS(α)
from the stripα ∈ 5α(−38, 38) onto the wholeα-plane. From (70) and (68) for the strips
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5α((4n− 3)8, (4n + 3)8), n > 0 we deduce an explicit analytic representation

S(α) = i

88

∫
Lα

H1(τ ) sinµτ −H1(α − (4n + 1)8) sinµ(α − (4n + 1)8)

cosµτ − cosµ(α − (4n + 1)8)
dτ

− i

88

∫
Lα

H2(τ ) sinµτ −H2(α − (4n− 1)8) sinµ(α − (4n− 1)8)

cosµτ − cosµ(α − (4n− 1)8)
dτ

+
α − (4n− 1)8

48
H1(α − (4n + 1)8)− α − (4n + 1)8

48
H2(α − (4n− 1)8)

+
n∑

m=1

[H1(α − (4m− 3)8)−H2(α − (4m− 1)8)] (71)

and for the stripα ∈ 5α(−(4n + 3)8,−(4n− 3)8)

S(α) = i

88

∫
Lα

H1(τ ) sinµτ −H1(α + (4n− 1)8) sinµ(α + (4n− 1)8)

cosµτ − cosµ(α + (4n− 1)8)
dτ

− i

88

∫
Lα

H2(τ ) sinµτ −H2(α + (4n + 1)8) sinµ(α + (4n + 1)8)

cosµτ − cosµ(α + (4n + 1)8)
dτ

+
α + (4n + 1)8

48
H1(α + (4n− 1)8)− α + (4n− 1)8

48
H2(α + (4n + 1)8)

−
n∑

m=1

[H1(α + (4m− 1)8)−H2(α + (4m− 3)8)]. (72)

The solutions(β) can be represented in a form similar to (71), (72).
If the right-hand side of (63) grows no faster than an exponent exp(ν|α|) asα → ±i∞,

we can substituteS(α) = sinm µαS0(α) with a sufficiently large integerm, µm > ν so that
the system

S0(α − (−1)j8)− S0(−α − (−1)j8) = (−1)m(j+1)Hj (α)/ cosm µα j = 1, 2 (73)

has an exponentially decreasing right-hand side and the above-discussed theory can be applied.
We use this theory in order to reduce the system of functional equations (23) to a system of
linear equaitons in a Banach space.

Appendix B. Proof of boundedness of the operatorsK1 andK2

First, we prove the boundedness of the operatorK2. Consider the estimate

I = supβ∈52
|νδ(β)[(K2ξ)(β)− κ(β)(K2ξ)(i∞)]|
= supβ∈∂52

|νδ(β)[(K2ξ)(β)− κ(β)(K2ξ)(i∞)]|
6 C0(supx∈R\0|νδ(ix + 8̄ + ε)[(K2ξ)(ix + 8̄ + ε)− κ(ix + 8̄ + ε)(K2ξ)(i∞)]|

+supx∈R\0|νδ(ix − 8̄− ε)[(K2ξ)(ix − 8̄− ε)
−κ(ix − 8̄− ε)(K2ξ)(i∞)]|) = C0(I1 + I2). (74)

In estimate (74), first, we exploited the well known result that a regular function attains its
maximal value on the boundary of a domain and, then, the supremumI was estimated by
suprema over the right vertical boundary of52 and over the left one. These suprema are
denoted asI1 andI2 respectively. We demonstrate an estimate forI1, thenI2 is treated in the
similar manner. By use of the formulae for the analytic continuation ofs-integrals we can
identically transformI1 in (74) to the form

I1 = supx∈R\0

∣∣∣∣νδ(ix + 8̄ + ε)
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×
{

i

88̄

∫
Lβ

dτ

(
D2(τ, ξ) cosµ̄τ

cosµ̄τ + cosµ̄(ix + ε)
− D1(τ, ξ) cosµ̄τ

cosµ̄τ − cosµ̄(ix + ε)

)
+D1(ix + ε, ξ) cotµ̄(ix + ε)

ix + ε − 28̄

48̄

−D2(ix + ε, ξ) cotµ̄(ix + ε)
ix + ε + 28̄

48̄
− κ(ix + 8̄ + ε)(−iµξ(i∞))

}∣∣∣∣
= supx∈R\0

∣∣∣∣νδ(ix + 8̄ + ε)

{
i

88̄

∫
Lβ

dτ

×
[
µψ+(τ )[ξ(a(τ )−8) + ξ(−a(τ)−8)] + 2µξ(i∞))

× cosµ̄τ

cosµ̄τ + cosµ̄(ix + 8̄)
− (µψ−(τ )[ξ(a(τ ) +8) + ξ(−a(τ)−8)]

+2µξ(i∞)) cosµ̄τ

cosµ̄τ − cosµ̄(ix + 8̄)

]
+

i

88̄

∫
Lβ

(
cosµ̄τ

cosµ̄τ − cosµ̄(ix + 8̄)
− cosµ̄τ

cosµ̄τ + cosµ̄(ix + 8̄)

)
dτ

×2µξ(i∞) + (µψ−(ix + ε)[ξ(a(ix + ε) +8)

+ξ(−a(ix + ε) +8)] − µψ+(ix + ε)[ξ(a(ix + ε)−8)
+ξ(−a(ix − ε)−8)]) cotµ̄(ix + ε)

ix + ε

48̄
+(−µ/2)ψ−(ix + ε)[ξ(a(ix + ε) +8) + ξ(−a(ix + ε) +8)] cot µ̄(ix + ε)

+(−µ/2)ψ+(ix + ε)[ξ(a(ix + ε)−8) + ξ(−a(ix + ε)−8)] cot µ̄(ix + ε)

−κ(ix + 8̄ + ε)(−iµξ(i∞))
}∣∣∣∣ ξ ∈ A1 (75)

where we usedD(i∞, ξ) = −iµξ(i∞),

ψ±(τ ) = sinτ√
γ 2 − cos2 τ

sinµa(τ) tanµ̄τ

cosµa(τ)± sinµϕ0

with ψ±(τ )→−1 and

|ψ±(τ ) + 1| 6 const e−µ|Im τ | (76)

asτ →±i∞; µ < 1,µ < µ̄. The last integral in the right-hand side of equalities (75) can be
explicitely calculated:

i

88̄

∫
Lβ

(
cosµ̄τ

cosµ̄τ − cosµ̄(ix + ε)
− cosµ̄τ

cosµ̄τ + cosµ̄(ix + ε)

)
dτ = − 1

2 cotµ̄(ix + ε).

After simple rearrangements we come to the form ofI1 which is subjected to further estimation

I1 6 I−1 + I+
1 + I 0

1 (77)

with

I±1 = supx∈R

∣∣∣∣νδ(ix + 8̄ + ε)
±iµ

88̄

∫
Lβ

dτ (ψ±(τ )[ξ(a(τ )∓8)− ξ(i∞)

+ξ(−a(τ)∓8)− ξ(i∞)] + 2(ψ±(τ ) + 1))
cosµ̄τ

cosµ̄τ ± cosµ̄(ix + ε)

∣∣∣∣ (78)
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and

I 0
1 = supx∈R\0|νδ(ix + 8̄ + ε){(ψ−(ix + ε)[ξ(a(x + ε) +8) + ξ(−a(ix + ε) +8)]

−ψ+(ix + ε)[ξ(a(ix + ε)−8) + ξ(−a(ix + ε)−8)])
×µ(ix + ε)

48̄
cotµ̄(ix + ε)− µ/2 cotµ̄(ix + ε)(ψ−(ix + ε)[ξ(a(ix + ε) +8)

+ξ(a(ix + ε) +8)] + 2ξ(i∞))− µ/2 cotµ̄(ix + ε)(ψ+(ix + ε)

×[ξ(a(ix + ε)−8) + ξ(a(ix + ε)−8)]
+2ξ(i∞)) +µξ(i∞) cotµ̄(ix + ε)(1 + i tanµ̄(ix + ε)κ(ix + 8̄ + ε))}|.

Taking into account estimate (76) and the asymptotic behaviour ofκ(β), by use of the definition
of the norm‖;̇A1‖ and by inequality|ξ(i∞)| 6 ‖ξ ;A1‖ we come to the estimate forI 0

1 :

I 0
1 6 C0

1‖ξ ;A1‖. (79)

Now we turn toI±1 . We have

I±1 6 J±1 ‖ξ ;A1‖ + J±2 ‖ξ ;A1‖ (80)

with

J±1 = supx∈R

{
µ

88̄

∫
Lβ

| dτ ||ψ±(τ )| |νδ(ix + 8̄ + ε)

|νδ(τ )|
∣∣∣∣ cosµ̄τ

cosµ̄τ ± cosµ̄(ix + ε)

∣∣∣∣} (81)

J±2 = supx∈R

{
µ

48̄

∫
Lβ

| dτ ||νδ(τ )(ψ±(τ ) + 1)| |νδ(ix + 8̄ + ε)

|νδ(τ )|
∣∣∣∣ cosµ̄τ

cosµ̄τ ± cosµ̄(ix + ε)

∣∣∣∣}.
(82)

One can prove the following lemma.

Lemma B.1. The supremaJ±1,2 in (81) and (82) are bounded ifδ < µ.

Proof of this lemma follows from boundedness of the supremum

J = supx∈R

{∫
Lβ

| dτ | |νδ(ix + 8̄ + ε)

|νδ(τ )|
∣∣∣∣ cosµ̄τ

cosµ̄τ ± cosµ̄(ix + ε)

∣∣∣∣} (83)

since in accordance with (76) the inequalities

|ψ±(τ )| < const

|νδ(τ )(ψ±(τ ) + 1)| < const (δ < µ)

on Lβ is valid. In order to prove the boundedness ofJ we introduce the new variable of
integrationw = τ/i in (83) and exploit the obvious estimates forνδ:

|νδ(ix + 8̄ + ε)| 6 C exp(δ|x|) 6 2c cosh(δx) x ∈ R
d0 + d1 exp(δ|w|) 6 |νδ(iw)| 6 d2 exp(δ|w|) w ∈ R

whereC, d0, d1 andd2 are positive constants. After simple transform we come to the chain of
estimates (̄σ = δ/µ̄)

J 6 2Csupx∈R

∫ ∞
0

{
cosh(µ̄w)[exp(µ̄|x|)]σ̄ /(d0 + d1[exp(µ̄w/2)]σ̄ )

[(coshµ̄w − cosµ̄ε coshµ̄x)2 + sinh2 µ̄x sin2 µ̄ε]1/2

}
dw

6 C1supx∈R

∫ ∞
0

{
cosh(µ̄w)[cosh(µ̄|x|)]σ̄ /(d0 + d1[cosh(µ̄w/2)]σ̄ )

[(coshµ̄w − cosµ̄ε coshµ̄x)2 + sinh2 µ̄x sin2 µ̄ε]1/2

}
dw

= C2supq>1

∫ ∞
0

[q]σ̄ /(d0 + d1[
√

1 +p2/2)]σ̄ )

[(
√

1 +p2 − q cosµ̄ε)2 + (q2 − 1) sin2 µ̄ε]1/2
dp. (84)
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In the last step we have used the new integration variablep = sinh(µ̄w) and notation
q = cosh(µ̄x). After introducingτ = p/q the integral in the right-hand side of the chain of
inequalities (84) can be split into two integrals over the intervals [1,∞) and [0, 1] respectively,
then we estimate the integrand in the second integral and obtain

J 6 C3supq>1

{∫ ∞
1

1/(d0 + d1[
√
q−2 + τ 2/2)]σ̄ )

[(
√
q−2 + τ 2 − cosµ̄ε)2 − (q−2 − 1) sin2 µ̄ε]1/2

dτ

}
+C4supq>1

{∫ 1

0

[q]σ̄

(d0 + d1[qτ/2)]σ̄ )
dτ

}
. (85)

The first summand in the right-hand side of (85) is obviously bounded, the second one is also
bounded in view of the estimate∫ 1

0

[q]σ̄

(d0 + d1[qτ/2)]σ̄ )
dτ = qσ̄−1

∫ q

0

1

(d0 + d1[t/2]σ̄ )
dt ∼ Cqσ̄−1t1−σ̄ |q ∼ const

with σ̄ < 1, q > 1. This completes the proof of the lemma.
Now the desired estimate forI1 andI in (74) follows from (77) and (79), (80). If we take

into account that

‖K2ξ ;A2‖ = supβ∈52
|(K2ξ)(β)| + I 6 supβ∈52

|(K2ξ)(β)− κ(β)(K2ξ)(i∞)|
+supβ∈52

|(K2ξ)(i∞)| + I 6 C1I (86)

from the estimate forI we easily conclude that

‖K2ξ ;A2‖ 6 const‖ξ ;A1‖
which means boundedness of the operatorK2.

In order to estimate the norm of the operatorK1 it is convenient to follow a slightly
different method. We shall briefly describe it herein. As in the case of the operatorK2 (see
(86), (74)) boundedness ofK1 is easily deduced from the estimate

N := supα∈51
|νδ(α)(K̃1η)(α)| 6 const‖η;A2‖ (87)

where

(K̃1η)(α) = (K1η)(α)− (K1η)(i∞)
with

(K1η)(i∞) = i

88

2∑
j=1

∫
Lα

(−1)j+1/µ[η(b(τ) + (−1)j 8̄) + η(−b(τ) + (−1)j 8̄)] dτ.

Analogously to (74) we obtain the estimate

N := supα∈∂51
|νδ(α)(K̃1η)(α)| 6 supx∈R|νδ(ix +8 + ε)(K̃1η)(ix +8 + ε)|
+supx∈R|νδ(ix −8− ε)(K̃1η)(ix −8− ε)| = N1 +N2

whereN1 andN2 denote the first and second summands respectively in the left-hand side of
the last equality. The estimates for both of them are similar and for compactness we consider
N1 only. From the functional equations forS-integral(K̃1η)(α) we have

(K̃1η)(ix +8 + ε) = (K̃1η)(−ix +8− ε)
−cosµ(ix + ε)− sinµϕ0

µ sinµ(ix + ε)
[η(b(ix + ε)− 8̄) + η(−b(ix + ε)− 8̄)]
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and therefore

N1 6 supx∈R|νδ(ix +8 + ε)(K̃1η)(−ix +8− ε)| + supx∈R

∣∣∣∣νδ(ix +8 + ε)

×cosµ(ix + ε)− sinµϕ0

µ sinµ(ix + ε)
[η(b(ix + ε)− 8̄) + η(−b(ix + ε)− 8̄)]

∣∣∣∣
= N1

1 +N2
1 (88)

whereN1
1 denotes the first summand andN2

1 the second one in the left-hand side of equality
(88). We easily conclude that

N2
1 6 const‖η;A2‖ (89)

where we took into account the equality

η(β − 8̄) + η(−β − 8̄) = η(β − 8̄)− κ(β)η(i∞) + η(−β − 8̄)− κ(β)η(−i∞)
and the definition of the norm‖.;A2‖. ForN1

1 we obtain

N1
1 6 supx∈R

{
1

88

2∑
j=1

∫
Lα

|dτ |
∣∣∣∣ cosµτ + (−1)j sinµϕ0

cosµτ + (−1)j cosµ(ix + ε)

∣∣∣∣∣∣∣∣νδ(ix +8 + ε)

νδ(τ )

∣∣∣∣
×|νδ(τ )||η(b(τ) + (−1)j8)− κ(τ)η(i∞)
+η(−b(τ) + (−1)j8)− κ(τ)η(−i∞)|

}
6 C0J0‖η;A2‖ (90)

with

J0 = supx∈R

{
1

88

2∑
j=1

∫
Lα

|dτ |
∣∣∣∣ cosµτ + (−1)j sinµϕ0

cosµτ + (−1)j cosµ(ix + ε)

∣∣∣∣∣∣∣∣νδ(ix +8 + ε)

νδ(τ )

∣∣∣∣}.
Note that forδ < µ boundedness ofJ0 is proved in the same manner as forJ in the lemma B1.
From (89), (90) and (88) we come to the inequality (87) and, then, to boundedness of the
operatorK1, which completes the proof of proposition 3.2.

Appendix C. Analytic continuations for the spectral functionsf (z) and g(z)

From the functional equations (20) we find

f (z) = −R(z−8, γ, λ)σϕ0(28− z)[1 + λ(K1G0)(28− z) + O(λ2)]

+λT (z−8, γ, λ)[G0(b(z−8)− 8̄) + O(λ)] z ∈ 5z(8, 38) (91)

f (z) = −R(z +8, γ, λ)σϕ0(−28− z)[1 + λ(K1G0)(−28− z) + O(λ2)]

+λT (z +8, γ, λ)[G0(b(z +8) + 8̄) + O(λ)] z ∈ 5z(−38,−8). (92)

Forg(ζ ) we have

g(ζ ) = −R(ζ − 8̄, γ−1, λ−1)[G0(28̄− ζ ) + O(λ)]

+λ−1T (ζ − 8̄, γ−1, λ−1)
µ sinµa(ζ − 8̄)

− cosµa(ζ − 8̄)− sinµϕ0
[F0 + O(λ)] (93)

ζ ∈ 5ζ (8̄, 38̄)

g(ζ ) = −R(ζ + 8̄, γ−1, λ−1)[G0(−28̄− ζ ) + O(λ)]

+λ−1T (ζ + 8̄, γ−1, λ−1)
−µ sinµa(ζ + 8̄)

cosµa(ζ + 8̄)− sinµϕ0
[F0 + O(λ)] (94)

ζ ∈ 5ζ (−38̄,−8̄).
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Since we need to computeg(ζ ) in5ζ (−π−8̄, π +8̄)with 8̄ = π/4, two additional formulae
for continuaton should be taken into account:

g(ζ ) = R(ζ − 8̄, γ−1, λ−1)R(38̄− ζ, γ−1, λ−1)[G0(ζ − 48̄) + O(λ)]

+(−λ−1)R(ζ − 8̄, γ−1, λ−1)T (38̄− ζ, γ−1, λ−1)

× (−µ) sinµa(38̄− ζ )
cosµa(38̄− ζ )− sinµϕ0

[F0 + O(λ)]

+λ−1T (ζ − 8̄, γ−1, λ−1)
µ sinµa(ζ − 8̄)

− cosµa(ζ − 8̄)− sinµϕ0
[F0 + O(λ)] (95)

ζ ∈ 5ζ (38̄, 58̄)

g(ζ ) = R(ζ + 8̄, γ−1, λ−1)R(−38̄− ζ, γ−1, λ−1)[G0(ζ + 48̄) + O(λ)]

+(−λ−1)R(ζ + 8̄, γ−1, λ−1)T (−38̄− ζ, γ−1, λ−1)

× µ sinµa(−38̄− ζ )
− cosµa(−38̄− ζ )− sinµϕ0

[F0 + O(λ)]

+λ−1T (ζ + 8̄, γ−1, λ−1)
(−µ) sinµa(ζ + 8̄)

cosµa(ζ + 8̄)− sinµϕ0
[F0 + O(λ)] (96)

ζ ∈ 5ζ (−58̄,−38̄).

Note that, since the right-hand sides in formulae (51)–(96) are known in an explicit form, their
values as well as the singularities are also determined. The integralsG0 in the right-hand sides
of (93)–(96) andK1G0 in (91), (92) are regular functions in the corresponding basic strips,
therefore, only singularities of the other factors in the right-hand sides of (51)–(96) should
be taken into account. Since these factors are elementary functions, determination of their
singularities which are poles and branch cuts is a simple task.
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